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Abstract

The efficiency of learning from unclassified data (unsupervised learning) is examined by
constructing a framework similar in style to the recent work on supervised concept learning
inspired by Valiant. We define the framework and illustrate it with results on three model
classes. The framework is compared to both the supervised learnability model and other

models of unsupervised learning.

1 Introduction

Supervised concept learningoccurs when a teacher presentsthe learnerwith data labeled

accord:.ngto whether the items are examples or counterexamples of the targetconcept. The

learnermust then solvea search problem in a pre-designatedconcept class. Unsupervised

learningomits the teacher,and as a resultthe nature of the problem changes in an essential

way. In thiswork we ask what itmeans fora hypothesisclasstobe learnablein an unsupervised

setting,and ifitislearnable,what itmeans to be efficientlylearnable.

This researchoriginatedwith ongoing effortsto constructefficientempiricallearningpro-

grams applicableto NASA domains. Unsupervised learningproblems tend to be more appli-

cable than supervised concept-learningproblems; most of the existingtheory,however, has

been developed for the latter.Even in the supervisedmodel, however, the assumption of in-

dependent random examples is typicallytoo strong;and the introductionof noiseinto the

example sequence requiresthe additionof new nuisance parameters to the models. Existing

theoriesofunsupervised learningdevloped by statisticians,while mathematically elegant,are

hard to analyzeforcomputational complexitybecause they assume a numerical-analysismodel

of computation. By contrast,the model suggestedhere

* providesa computational theoryforlearningprobabilitydistributionsin an unsupervised

setting and for analyzing the learning complexity associated with the representation of a

family of distributions.

• accounts for noise and temporal dependence among the examples, and suggests ways to

extend this ability naturally to the supervised case.

The model has been chosen with experimental objectives in mind. The mathematical results

are more exploratory than fundamental, but are sufficient to demonstrate the potential utility

of the framework. Additionally, many interesting, unexplored problems present themselves for

investigation.

"Internet: LAIRDQPLUTO.ARC.NASA.G OV.



2 Unsupervised Learning: brief overview

Many approaches to unsupervised learning have been studied over the years; of these, the most

closely related to this work are the studies of finite-mixture distributions and the theory of
hidden Markov models.

We can imagine a population consisting of a mixture of N component populations over

the same vector space X. With the i'th component distribution fi, we associate a probability

Pi. fi is assumed to be parameterized by some finite set of values 0i (e.g., mean and standard

deviation), which we indicate by writing f_(xl 0i) (x E X). The mixture distribution f is then
given by

N

f(x) =
i=1

Intuitively, the process described by such a distribution is one in which a population is selected

with probability p_, and then a vector is drawn from that population according to the probability

distribution fi. The learning problem is to identify N, the Pl, and 0i from independent random

samples of the population distributed according to f. Note that the distributions may overlap

- i.e., the same vector may be selected in different ways if it is part of two or more populations.
Theoretical problems that have been studied in connection with mixture models are iden-

tifiability (the question of whether every mixture has a uniquely distinguishable set of compo-

nents), sampling requirements (number of data points required for an acceptably close solu-

tion), and effective algorithms for computing the pax_meters from consistent estimators. Good

references for this work are [6] and [7].

Markov modeling, subject to a variety of assumptions and conditions, has been applied to

problems ranging from speech recognition to cell biology under the generic label of "hidden

Markov models _ . Such a model consists of a finite Markov chain with, say, n states, and a set

of n probability density functions f,, one for each state in the chain. From its current state, the

Markov process makes a transition to some state s, but the actual state of the process is not

observable. Instead, a symbol x E X is selected according to the distribution f, and presented

to the learner, whose task is to infer the underlying chain and associated distributions.

Baum and Petrie [3] demonstrate a maximum-likelihood convergence property for chains

with a given number of states. Later, in the course of trying to apply this result, Baum

and others [4] developed the re-estimation algorithm for determining the maximum-likelihood

parameters of a given chain.

A different, but related, class of Markov models is obtained by associating with each tran-

sition of a Markov chain a symbol x from a finite set X. Thus from a given state s, the process

selects a transition from s to another state s_, according to the probability p,,,, assigned to that

transition, and emits the symbol associated with that transition. The learning problem, again,
is to infer the structure and parameters of the chain responsible for the observed sequence of

symbols. Rudich [15] studied this problem using a m_mum'Iikelihood strategy, with the goal

of identifying the minimum-size chain in the limit from an infinite sample, assuming that the

transition probabilities are rational. He considers first the case where an upper limit is provided

on the number of states of the target chain, and later the case where no such limit is known.

In none of the above work, however, is the computational complexity of finding or using the

models considered. Also, in view of the fact that in actual applications statistically dependent

sample data is the norm, it is remarkable that learning from other than independent data has



been so consistentlyavoided in the literature.

3 Unsupervised Learning Models

Let us envisionthe learneras receivinga stream of input data,eitheras a continuingsequence

of characters(e.g.,bits)or as blocks of data, such as vectorsor strings.In both cases,the

data are discrete,both in structureand in time. Initiallythe learnerperceivesthe input as

random, sincehe has no priorbasisforexpectationor prediction.In time, however, patterns

are discernedand regularitiesclassified,untilthe learnerislesssurprisedby what he sees.

Ideallysuch a learnerreachesthe point where s/he can predictthe next input unitwith 100_

accuracy.When randomness isinherentinthe data,however, thisidealisunattainablewithout

omniscience.

In thisscenario,the learnerinfersstatisticalregularitiesin the data stream without the

benefit Of a teacher. We are viewing such unsuperv/sed learning as the inference of a probability

distribution for the next input unit. This definition turns out to be flexible enough to cover

situations where the particular temporal sequence of input units is not of concern, as well as

those in which the temporal aspects are significant. If an application entails making choices

or decisions based on the predicted input, then utility theory can be applied to devise an

optimal strategy, but we shall not pursue the learning problem beyond that of determining the

probabilities.

In developing a formal model of unsupervised learning, we need to understand just what it

is that we are learning, how the object we are trying to learn is presented, and what the criteria

are for learning - specifically, when a class is learnable, and when it is efficiently learnable.

3.1 Model Classes

Recallthat unsupervised learningentailsextractingpredictableaspects from an apparently

random input stream. We callthe representationofour predictionsa model.

Let the input stream be xl,x2,...,zt,..,takingvaluesin the finiteset X. A model M

isa procedure that,afterreceivingas input xl,...,zt-i but beforereceivingzt,iscapable of

computing a (conditional)probabilitydistributionP(xt [zx...zt-1) ofthe next zt E X. Thus,

beforeseeingxt,M isable to compute for any z E X a rationalfractionin [0,1],which we

interpretas itspredictionfor the conditionalprobabilityP(ztlzl...zt-1). To say that M

computes a probabilitydistributionmeans thatthe valuesofP over allx are normalized such

that _zf_x P(z [ zl... zt-1) = 1. After seeing zt, Air updates its "state _ to reflect the value zt,

so that it can then compute P(zt+l i zl... zt). This process continues forever.

In addition to these functional requirements, we impose the following efficiency require-

ments: the time for A_ to compute any prediction P(ztlzl...zt-1) and the time for it to

update its state to account for zt are each bounded as a function of t. Intuitively, this means

that Air doesn't "slow down" as time goes on; it is able to keep up with the incoming data

stream and remain an on-line predictor.

The formal definitions are given below, along with a running example. Let X be a fixed 1

set of symbols, and let Q[0,1] be the set of rationals over the interval [0,1].

'and in this paper, finite



Definition 3.1 A well-parameterized family of distributions is a finite set A of parameter

values, with an associated algorithm P A that computes a probability distribution on X for each

A G A: PA(x,A) e Q[0,1], and EzPA(z,A) = 1,/or all A. 2

Definition 3.2 Fix a well-parameterized distribution family A. A model M is an algorithm that

receives as input an infinite stream zl, z2 ... E X °° and in turn outputs a stream A1, A2 ... E A°°
of parameters from A. M outputs At after receiving zt-i but before receiving zt; we interpret

PA(', At) as M 's estimate for the conditional probability distribution P(. [zl,..., zt). Further.

more, the time for M to compute and output At must be bounded (as a function of t).

Intuitivelythe seriesof parameters output by a model representthe model's visionofhow

the probabilitydistributionover the input varieswith 'time._ the model views the world as

static(successivez_'sare independent),then itoutputs the same parameter in each round.

Note that we do not view a model as a learningprocess:itisthe job of a separatelearnerto

findthe rightmodel.

A set 3{ of models overthe same X and A isreferredto as a model class.The model class

isto unsupervisedlearningwhat the concept classisto supervisedlearning.

Exaxnple 3.3 Suppose X --{0,I}. Let A be a finitesubsetofQ[0,1],and foreach A E A, let

P(z, A) :--(ifz -- 1 then A else 1 - A). This describesa fwnily of Bernoullidistributions

(biasedcoinflips)where the probabilityisA ofcoming up with a "1_.(By contrast,the family

of a/lBernoullidistributions,for which A - Q[0,1],isnot wellparameterized because A is

infinite.)

Fix A E A, and consider the model M_ that outputs A for every t. This model corresponds

to a view of the world in which the environment is conducting a sequence of independent coin

flips, yielding l's and O's with probability A and 1 - A, respectively. The class A( of models

of this type, one for each parameter in A, represents a choice of world-views that agree about

the nature of the environment (coin-flipping) but disagree aboutthe probabilities. The "real"

world may not be any of these, but over a given period of time, one of these models is likely to

be the best of its class in accounting for the frequency of l's and O's. A

When a growth parameter n is given, we have a model family A{n, associated with Xn and

An (n __ 1), provided: (i) The algorithm Pn (corresponding to An) computes the probability

Pn(z, A) in time bounded by a polynomial in n; and (ii) each model M in Ain computes its

output At in time uniformly bounded by a polynomial in n. This means that our model families

must be able to scale upward at a reasonable rate to handle larger sized models and possibly

a larger set of input symbols.

Example 3.4 (Bernoullifamily.)For n __ 1, letAn be the subset of rationalsA in Q[0,I]

whose lengthlen(A),when writtenin binary,isat most n bits.Let Ain be the classofmodels

correspondingto An, as inExample 3.3.Then X --{0,1},An, and Ain togetherdefinea family

of Bernoullimodels. The time fora model A_fE Ain to output itspredictionis0(n), sinceall

ithas to do isoutput up to n bits.For the same reason,Pn requires0(n) time to compute

probability estimates. /x

2When X lJ infinite, the algorithm PJt need8 to be efficient as a function of the length of z.
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3.2 Presentation

In this work we assume only that the input is a stream {zt, t >_ 1} E X _ of symbols from a

finite set X. It is convenient to regard the symbols as arriving one after another at a steady

rate. In practice, this rate strongly affects how large an n we can support for our model class

_t, on a given machine.

3.3 Learnability

Having selected a model class _{, we then have a learning problem: to find a model in _t that

is "optimal" (in some sense) for predicting the input data stream.

How do we decide which model is best? In general there may be no "best" model. But

when in fact the input really is the result of a model M in the class, we should certainly

expect, disregarding the computational resources required, that some algorithm eventually

could identify M, or an equivalent, as the best model.

Definition 3.5 Two models M and M t with outputs in h are said to be equivalent if, for

any input stream, the values of P(x, At) and P(z,A_) are the same for all t and x - i.e.,

the probability distributions predicted by the two models are always identical, even when their

outputs At and A_ are different.

Definition 3.6 A model class _ is learnable in the limit/f there exists a procedure _ with the

following properties:

i. In response to the stream of inputs {xt, t >_ 1} E X _, A outputs a stream of models

{Me, t >_ 1} in _¢¢. It is convenient, but not necessary, to consider Mt as the response

of A to the input zt-1.

_. Let M be any model in JM, and let the input stream be generated according to the probability
distribution determined by M. Then with probability one, all but finitely many of the

models Mt output by _ are equivalent to M.

A model that is "way off_ indescribingthe input willover time predictvery small proba-

bilitiesforthe inputsthatactuallyoccur.By contrast,a bettermodel findsthat itspredictions

come true more often,in that the probabilitiesforobserved inputsare higher.The likelihood

isa well-known measure of the qualityof predictionsoverthe historyofthe process.

Definition 3.7 Let M be a model and X t --zt...zt a sequence oft inputs. Let Ax,... ,At be

the parameter outputs of M over this sequence. The likelihood of X t according to M is given

by the product

L(XtlM) -- P(zl, A1)...P(wt, At).

The likelihoodfunctionisusefulin proving learnabilityin the limit.The idea behind this

type of proof isas follows.Let the input be generatedby M E Ai,and letM wbe any model in

A{. One shows that with probabilityone,

L(XtlM ) > L(Xt]M w) (1)
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forallbut finitelymany t. Furthermore,equalityholds iffM and M tare equivalent.Thus a

learningalgorithm that simply outputs the model with the maximum likelihoodforthe input

so farsatisfiesthe learnabilityrequirement.

The followingresult,forexample, isobtained from thistype of approach. Various proofs

are availablein the statisticsliterature;see [13]fora simpleproof.

Proposition 3.8 Let X be a finite set and 34 a finite class of models predicting statistically

independent inputs over X. Then 34 is learnable in the limit.

As an immediate corollary,Bernoullimodels are learnablein the limit. In interesting

question isfor what processesEq. (1) isalsoa necessaryconditionfor learnability.Also,

in many situationsfindinga model isnot enough: we want to finda minimum.size model

equivalentto the source.Resultsofthiskind are obtained in [13].

3.4 Efficient Learnability

Learnability in the limit does not necessarily imply uniform convergence over time - i.e., gradu-

ally improving the quality of the model. But while infinite convergence results are not especially

useful by themselves, they frequently point the way toward finite algorithms: run the infinite

algorithm for a certain period of time, stop it, and see what you've got.

We note that (as with supervised learning} a finite algorithm can usually be expected only

to approximate the input source. How do we measure the closeness of such an approximation?

Definition 3.9 Let .Iv(be a model class. A distance function d is a non-negative real function

on pairs of models A{ x 34 such that: (i) for equivalent models, M and M' E 34, d(M'] M) = O;
Oi) for inequivalent models, d(M' I M) > O.

Exaxnple 3.10 Let M be the targetmodel, and M' any othermodel. A ratherstrongdistance

functionisthe maximum possibledifferencein the predictedprobabilitiesof the two models:

dl(M' I M ) = max IPC=.).;) - PC=,, a,)l

Another popular distancefunctionisvariouslyknown as the crossentropy,informational

divergence,or Kullback-Leiblerfunction[11,12,16]:

d2CM_l M) = lim 1 L(An [M)
t-.so t log L(X, IMg,

assuming the limitexists.For ergodicprocesseswith the likelihoodproperty (Eq. I),thisisa

well-defineddistancefunction.The factthatthisfunctionisnot symmetric makes itsomewhat
difficultto work with.

The mean-squared error,most oftenused fortime-independentprocesses,isdefinedby

' [P(z, IA') - P(z_la)] =
ds(M'[M) = l!m _'_ t '

i=1

again assuming the limitexists.For processesconsistingof independent random events,this

limit is the expected value of the squared difference in predicted probabilities. L_



Given such a distmacefunctiond, we dividethe efficiencyquestionintotwo parts.Let A{_

be a (learnable)model family,with n as the growth parameter.

Definition 3.11 34,_ is said to be data efficient (with respect to the distance function d)if there

ezists a polynomial f and an algorithm 4, taking as parameters n, e, and 6, with the following

property: for an input stream generated by any M E A{, _ ezamines t < f(n, 1lie, 1///6) inputs

zl... zt and outputs a model M _ E Atn such that d(M *I M) < •, with probability > 1 - 6.

Below, we give examples of model families that are and are not data efficient, with respect
to differentdistancefunctions.

As with supervisedlearnability,there are familiesthat we know are data efficientbut for

which we do not yet have algorithmsto findgood models from the input data. The ability

to findgood models quicklyfrom a sufficientsample of the environment iscaptured by the

followingdefinition.

Definition 3.12 _,_ is said to be efficiently learnable if it is data efficient, and the learning

algorithm A runs in time bounded by a polynomial in the total size of the input data.

The efficiencies of learning several sample model families have been investigated; some

resultsare givenbelow (see[13]forthe complete analysis).To complete our running example,

we considerhere the Bernoullifamily- probably the simplestnon-trivialmodel family.

Example 3.13 (Bernoullifarnily.)The Bernoullifamily of models was defined in Example

3.4. The_e are 2n possiblemodels in thisfamily;the factthat we can efficientlyfindan •-

approximate model is,of course,a directconsequence of the exponentialconvergence ofsums

ofindependent random variablesto theirmean; and the resultsbelow generalizerathereasily

to multinomialand relatedstochasticprocesses,suitablyparameterized.

Assume the environment isa sequence ofl'sand O'sgeneratedby a Bernoulliprocesswhose

parameter isA. E An. Let dx be our distancefunction.Given • and/_,we want to chooseA E An

such that IA- A.I< •,with probability> 1 - 5.

Define4 to be 2-n//3ife < 2-_,or [e-2_J•2-_ otherwise.We argue that at most

t = (2)

inputs are required to obtain an e-approximate parameter A. (Note that the sample size t is

clearly polynomial in n, 1//e, and log 1//6.) Given this many inputs, let tl be the number of l's

in the string X t. Our algorithm is to deter_ne the proportion tx//t of l's and to round this

estimateto the nearestmultipleof2-_; thisvalueisoutput as our hypothesisA.

To see that t issufficientlylarge,considerfirstthe case where • _>2-n. Thus tJ < e,and

by Hoeffding'sInequality[I0],in t trials,

< 2e -2tEr_

< ,_.

Thus with sufficientlyhigh probability,the (rational)estimateti//tiswithint_ ofA.. Consider

now the effectofrounding, eIise reduced to the next lower multipleof 2-n. IfA, = i2-n and

4 = j2-n forsome integersi and j, then sincewith high probabilitytl//tiswithineIofA.,

(i-j)2 < < (i+j)2

7



Roundingtl/tgivesA, forwhich we have

(i- j)2 -n <_.A _<(i+ j)2-",

and solA-Ao[_<d<e.
1 -n Hoeffding's Inequality still guaranteesIn the other case, when • < 2 -n, •_ is fixed at _2 .

that hit will be within •r with high probability, and rounding will therefore result in A = A..

We have thus proved:

Theorem 3.14 The family of Bernoulli models is data efficient, with respect to the dl distance.

Furthermore, when • < 2 -n, the models are learnable exactly from polynomially many input

data, with high probability (> 1 - 6}.

As a corollary, we note that the above algorithm for processing the t data values runs in

time polynomial in t. Hence the family of Bernoulli models is efficiently learnable (with respect

to dl).

Suppose we use a different distance function? Obviously, the above results also hold for

the ds distance function. It can be shown that Bernoulli models are still data efficient and

efficiently learnable when the d2 distance function is used, but the algorithm changes slightly

to avoid singularities in the d2 function, and our upper bound on the size t of the data sample

differs from that given above for dl by a small constant factor.

Suppose next that our model class does not correspond to reality, that the actual probability

A° is not a multiple of 2 -n. Then the algorithm above will still produce a parameter A E An,

but as it happens, A may not be within • of Ao because rounding could push it off in the

wrong direction. A simple change to the calculation of d will fix this small problem, but this

illustrates that, even if an algorithm correctly finds an •-approximation to any model within

the hypothesized model class _n, that same algorithm may not produce an e-approximation

when the data is not a result of any model in the class, and may not even find the model in

the classthatmost closelydescribesthe data.

4 A Classification Model Family

Let r be a positive integer and X be the set of ordered n-tuples (vectors) (Zl,... ,xn), with each

element ("attribute") zi taking integer values in the set {0,..., r - 1}. Thus the cardinality of

X is r n. Suppose each vector in X is assigned a fixed probability, and that at regular intervals a

vector is selected independently and at random from this distribution and presented. In such a

case the optimal model may require at least r n bits to write down the distribution - in violation

of the polynomial scaling requirement for a model family. Efficiency thus dictates that vectors

be grouped into large sets, and that from the parameters of a set we be able to compute the

probability of any vector in the set. This is the motivation for our classification model.

We define a very simple family of classification models, but one that nevertheless presents

interesting problems for learning. A model partitions the vector space into a non-empty finite

set of disjoint orthogonal hyperboxes. The boxes are defined by a constraints of the form

i < zi _< j for each attribute (0 __.i,j <_ r). In two dimensions, for example, the r x r square

X is partitioned into rectangles. Associated with each box Si of the partition is a probability

_ri, interpreted as the probability that one of the vectors in set Si will occur next. If the vector



x isin set &, then itsprobabilityP(x) of occurringnext isunderstood to be ,dl&l. Thus

specifyinga partitionand a normalized set of probabilitiesfor each block has the effectof

assigninga probabilityto each vectorin the space.

Initiallywe shalllimit the lengths(in bits)of the set probabilities_rito k binary bits.

Naturallywe requirethat the probabilitiesOf the boxes sum to i. Furthermore the number of

boxes in the partitionwillbe bounded, and forsimplicity,we adopt the same constant k for

thisbound.

A classificationmodel can be encoded in about nklog r bitsby specifyingthe constraints

and probabilitiesof each ofthe rectangularsetsof the partition.An denotes the setofallsuch

validspecifications.A classificationmodel blf_outputs the encoding A ofa model beforeeach

input value zt is received.At, denotes the family of allsuch models, as a functionof n; we

referto thisfamily as k-RDC (bounded rectangulardisjointclassifications).Itiseasy to verify

that A, iswell-parameterizedby designing_ 0 (n) algorithmto compute the probabilitiesof

a vectorx from a model parameter A.

The view of the world paintedby theseassumptions isthatof an environment that selects,

independentlyforeach time t,one ofa smalInumber ofclasses,and choosesat random a vector

from that classfor presentation.Note that,unlikethe finite-mixturemodel discussedabove,

no vectorbelongsto more than one class.As with the coin-flipmodel, the actualenvironment

may not be generated in thisfashion,but the bestmodel in the classislikelyto capture some

aspectsof the environment, by classifyingadjacent vectorsintoa few (hopefullymeaningful)

classes.

k-RDC islearnableinthe limit,by Proposition3.8;but we areinterestedprimarilyinthe ef-

ficiencyoflearning.Suppose a stream ofvectorsisbeing generatedby a k-RDC model, and con-

siderhow we might go about identifyingthe sourcemodel. Proposition3.8 and identification-

in-the-limitgiveus a generous hint:eventuallya correctmodel willhave a higherlikelihood

than any incorrectone. The questionis,how largea sample isneeded beforeall%ad _ models

- i.e.,ones that are not _-approximationsto the source - have significantlylower likelihood,

with high probability?

Let Air,be the sourcek-RDC model, and letA_flbe a k-RDC model based on the partition

-- (R_} and assigninga probabilityof _r_to the block R_. Assume we have a sample X t of

t vectors,randomly generatedaccordingto the statisticsdetermined by M.. In studying the

learnabilityof thismodel class,we need two technicalpreliminaries(detailsare given in [13]).

Lemxna 4.1 Fiz any _ > O. Let R be a boz in any k-RDC partition (not necessarily the

target model M,). The probability _rR that the nezt input vector belongs to R can be determined

ezactly, with probability more than 1 - 6, from a sample of t _ectors, where t is bounded by a

polynomial in n and log(1/_).

The proof appeals to the previous result for the Bernoulli family. The main observation
is that any box R in a k-RDC partition contains a large number of vectors, at least r n-t+l

in fact. (This is a consequence of requiring that the boxes _tile" the vector space.) One then

argues that the total probability _rlz for the vectors in R is either zero or an integral multiple

of a constant _ depending only on k. Hence learning _r/z by sampling is a matter of learning a

Bernoulli parameter, which we can do using a sample of size 0 (log 1/6).

Lemma 4.2 For any _ > O, a sample of 0(log(n/8)) vector8 su_ces to determine ezactly the

mazimum-likelihood parametera (the 7rR 's) of all k-RDC partitions, with probability > 1 - 6.

9



For,ifthereare N admissibleboxes,and ifthe maximum-likelihood parameters (the_'s)of

each arelearnedexactlywith probability1- 6/N, then the probabilitythatany one parameter

islearnedincorrectlyislessthan 6. By Eq. 2, with t# --8/3, our sample need be no larger
than

Fiog_C2_V/6) ]
t=j _ /

And N can be bounded above by (2nr)i.

Theorem 4.3 The family k.RDC is data e_cient with respect to any distance function.

PROOF: The preceding lemmas show that we can determine the actual probabilities _rR for all

the blocks of all possible partitions using a data-efficient sample of vectors. We now consider

how to use these values to determine a model equivalent to the target Mo.

Let R be a block in some partition. From Lemma 4.1 we know that all parameters rR are

multiples of some constant _ depending on k. Thus rR/fl is an integer for each R. For each

model MI (consisting of a partition and the maximum-likelihood probabilities assigned to its

blocks), define the pseudo-likelihood function L(M1) as follows:

r.RI.,,,/,
L(MI)= _ LIRIJ

Note that _ isa polynomial sizerationalnumber. We claim thatthe pseudo-likelihoodfunction

ismaximized preciselyon those models equivalentto Air.:i.e.,£(M.) _ L_(MI),with strict

inequalitywhenever Air._ MI. From this,we conclude the proof by computing L foreach

model and choosing one with the largestsuch value. Failurecan occur only with probability

6,should our parameter estimatesbe wrong. Since itisa property of every distancefunction

that the distanced between equivalentmodels iszero,the resultholds for arbitrarydistance

functions.

Let R be a block in the partition of Ml, {Sj} the blocks of M,, and for each j, Xj =- RnSj.
Then

log X:(M:) = _-1 _ _R log(_MIRI)
R

log X_(Mo) -- D-1 _ _s log(_s/ISl)
5

We take one term from log £(M1) corresponding to a particular box R and expand this as a

sum over the sub-boxes Xj : R N Sj.

log_.(MI)R = _-I _ xx # log(_R/Inl).
xi

The portion of log £(M,) due to these same sets Xj is

log ._(M,)R = _-1Z rx i l°g(rxi/lXi[),
xi

10



sincerxi/]Xi] = _sj//[$i] (just a scale change). Subtracting,

x, k* lxit]

- x; IRI]
= fl-l[_rR- (_rR/R) _ IX_I]

= 0.

And the inequality above is strictly > unless all rxj/[Xi[ are equal -- i.e., all vectors in R have
the same probability.

Summing over all the boxes R, we have log £(M.) >_ log £(Mt), with strict inequality unless

the two models are equivalent. The claim follows directly by monotonicity of the log function.

EL

As a corollary, k-RDC is efficiently learnable given that we can generate and test all N

partitions in polynomial (in n) time. Also, there are several ways to relax the conditions on

the model class without sacrificing data efficiency. Most notably, the hard bound k can be

replaced by a poly-log function of n, thus allowing the number of classes to grow (slowly) and

the minimum non-zero probabiht_ _r to get smaller.

But while the model family is %fficiently" learnable in theory, a generate-and-test algorithm

is clearly impractical. Furthermore, by requiring that all classes be rectangular - even those

containing vectors with zero probability - a large number of classes must be dedicated to boxing

in vectors which never occur. This can be avoided by allowing one set in the partition to be

non-rectangular, and that it be the only one with _r - 0. Virtually the same argument goes

through, provided some condition is imposed forcing all rectangular boxes to contain O (r n-l°t")
vectors.

We have also studied less stringent class|fication classes, and find that typically these classes

are data efficient, but that an efficient search algorithm to find the model maximizing the

likelihood on the sample vectors is difficult to construct (cf. [5]).

5 Markov Models

An important feature of our model of unsupervised learning is that stochastically dependent

input values can be modeled. One of the simplest ways to relax the independence assumption

for inputs is to use Markov-dependent random variables. In this case, the total dependence of

the t'th prediction on the previous t - 1 inputs can be reduced to dependence on one of a finite

set S of values (%tates'):

eCx,Ixt... -- IsH), (3)
where the state st-1 E S captures all the dependency on zt,... ,zt-1.

Let A be a finite set of symbols (e.g., {0,1}). A Markov chain 3 over A consists of a (finite)

set S of states, one of which is designated the current state; a deterministic transition function

3More precisely, a finite function of a homogeneous, discrete time, discrete state, unifilax Markov process.
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5 mapping each state s and input value a into a new state st; and probabilities p(aJs),a _ A

for these transitions such that for all s e S, ]_e,_ p(a Js) = 1.
A Markov model M is a program based upon such a Markov chain. Before the t'th input

bit arrives, it uses the input xt-_ and current state st-i to compute the next state st =
5(sH,zt__), and to output the set of probabilities (p(aJst) Ja _ A}. The parameterized
distribution family A is a thus multinomial family (a Bernoulli family in case [A[ = 2). But
unlike models that view the environment as a sequence of independent events, M may output
different parameters at different times. Since we are interested in modeling environments that
are in equilibrium, we may restrict our models to those whose Markov chains are strongly
connected - i.e., indecomposable, with no transient states [2, 8].

As a growth parameter n, we typically count the maximum number of states; but we must
also limit the length in bits of the transition probabilities. A bound of length n on probabilities
for an n-state machine is quite liberal since it allows exponentially small probabilities. Thus one
family ._t,, of Markov models corresponds to a fixed set A = (0, 1}, the family An in Example
3.3, and the class of Markov chains with at most n states and with transition probabilities in
An.

Proposition 5.1 (see [3]) Let A be a finite set and .M a finite class of Markov chain models

over alphabet A. Then _ is learnable in the limit.

Itisalsointerestingthatthe Markov chain model with the minimum number ofstatescan be

learnedinthe li_t ([13,15]).

Besides illustratinga dependent-variablemodel class,Markov farniliesprovide us with an

example of a familythat isnot efficientlylearnable.Finiteautomata are notoriouslydifficult

to learnin the supervisedcase [1,9, 14],so itisnot surprisingto discoverthat they are also

hard to learnin the unsupervisedcase. We givea simple proof for the dl distancefunction.

(d2 isa bitmore complicated;see [13]).

Theorem 5.2 The family Aln of Markov models (as definedabove) with at most n states

and transitionprobabilitiesbounded in length by n bitsisnot data efficient(and hence not

efficientlylearnable)with respectto dl.

PROOF: We exhibittwo models which a polynomial-sizesample cannot distinguishwith arbi-

trarilyhigh probability,even though the two models each have more than _ errorrelativeto
one another.

Assume an alphabet A = {a,b,c,d}. Machines MI and M2 are shown below, until a b

transitionoccurs,the predictionsforthe two models M1 and M2 are identical.The probability

that no b-transitionoccurs in t transitionsis (1 - 2-n)t, and we requiret such that this

probabilityislessthan 5. Taking logs,we find:

t.log(1- 2-n) < log5.

But iftisbounded by a polynomial in n, thisconditionfailsforallsufficientlylargen.

ISno b transitionoccurs,any algorithm must choose between models MI and M_ on the

basisof a stringof a'salone.Ifitchooses MI but the actualtargetisM_, the erroris1 (the

12



differencein probabilityfor the c transitionout of the rightmoststate).Ifitchooses M2 but

the actualtargetisMI, the errorisagainlbased on the d transition.

a: . " : "

The algorithmcould stillsucceedifitproposed some furthermodel M3 differentfrom either

MI or M2, such that d(Ms [MI) < e and d(Ms [M2) < E. But we can show that there isno

such model. Immediately afterthe firstb transition,suppose Ms isin a statethat predictsa

c with probabilityPe < 1 and a d with probabilityPd < 1. NecessarilyPe + Pd < 1,and so if

Vo > ½ then W < ½. Thus eitherd(MslM1) or d(Ms [M2) isat le_-t½. Hence if, < ½, no
model is within _ of both M1 and M2. []

6 Concluding Observations

We have cast the problem of unsupervised learningintoa statisticalformat that differsfrom

that ofconventionalpatternrecognitionin itsemphasis on efficientpredictionand itsconcer,

for_imelyconvergence ("learning").Startingfrom definitionsof models and familiesof model

classes,we consideredsuccessivelystrongerconcepts oflearnability:

1. learnability in the limit: disregarding computational cost, a correct model can be identified
in finite time.

. data-e_cient learnability: uniformly learnable from a feasibly small amount of data,

without consideration of the computational resources required to extract the information
from that data.

3. e1_cientlearnability:uniformlylearnablewith a feasiblysmall data sample that can be

processedusing polynorniallysmall computing resources.

To illustratethese concepts,we have developed and analyzed threeillustrativemodel fam-

ilies:Bernoullifamilies,k-RDC classificationfamilies,and a particularMarkov farnily.Much

work remains to be done in constructingmeaningful, expressive,and usefulmodel families,

algorithmsto learnthem, and techniquesfor analyzingtheircomplexity.

From experiencepracticallearningalgorithmsneed to be "on-line_ in the sensethat they

successivelyrefinetheirhypotheses as more data arrives,insteadof collectinga largeclump

of data and emitting a singlehypotheticalmodel. Ifthe storageresourcesof the model are

bounded, then the predictionsof the model willexhibita random-walk behavior as runs of

typicaland atypicalinput data are received.Related problems concern the performance of

such an algorithmwhen the sourceofthe data isnot a model inthe targetclass,and when the

bestmodel may change ("drift_) with time.

While thiswork was intended to extend the Valiantmodel ofsupervisedlearnability,itis

worth a carefullook atthe differences.To thatend,letus definea supervised-modelingproblem
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as follows. Suppose 7 is a set of classification functions defined on a finite vector space X. The

purpose of these functions is to associate each vector x with one of a finite set of pre-determined

classes Cz,..., Ct. However, a function f E _r, rather than assigning a unique class to a vector,

specifies a probability distribution: /(x) is a set of k rational values pz(x),... ,pk(x) summing

to one, with the intended interpretation that x belongs to class C_ with probability pi(x). The

learning problem is to identify an arbitrary function f. E Y', given a stream of input examples

that have been classified by a teacher. The teacher provides examples of f. E _ by choosing a

vector x (not necessarily independently) from X according to some unknown sampling scheme,

assigning a classification C_ to z according to the probability distribution f, (x), and presenting

the pair (x,Ci) to the learning algorithm.

In the special case where the vector space is {0, 1}", and there are exactly two classes, and

all the probabilities are either zero or one, and the sampling scheme consists of independent

trials, we then have the problem of learning Boolean concepts. The Valiant model is obtained

by introducing a distance function d(fz If2) and requiring that the distance between the target

and the hypothesized functions be less than _ with high probability (1 - 6). The distance

(or _error') between f and f. is the measure of the set f A f, of vectors on which f and

f. yield different classifications, using the probability distribution over X. Let E denote the

mathematical expectation of a function with respect to the distribution P on X. Then

d(f I f.) = E[f(x)- f.(x)] 2

= d3(f If.),

the mean-squared errordefinedabove (Example 3.10). We thus see that the Valiantmodel

isa highlyspecializedcase of model learningover a vectorspace X × {0,1}, in which the

models need not account forthe distributionofthe X partofthe inputdata,but onlyfortheir

classification,with the mean-squared errord3 as the measure of distancebetween hypotheses.

From thisperspective,many interestinggeneralizationsof the model - includingthat of non-

independentexamples - become possible.
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